

SSI

Laser-Entfernungs-Messgerät LE-200

- Zusätzliche Sicherheitshinweise
- Installation
- Inbetriebnahme
- Fehlerursachen und Abhilfen

Benutzerhandbuch

TR-Electronic GmbH

D-78647 Trossingen

Eglishalde 6

Tel.: (0049) 07425/228-0 Fax: (0049) 07425/228-33 E-mail: info@tr-electronic.de

www.tr-electronic.de

Urheberrechtsschutz

Dieses Handbuch, einschließlich den darin enthaltenen Abbildungen, ist urheberrechtlich geschützt. Drittanwendungen dieses Handbuchs, welche von den urheberrechtlichen Bestimmungen abweichen, sind verboten. Die Reproduktion, Übersetzung sowie die elektronische und fotografische Archivierung und Veränderung bedarf der schriftlichen Genehmigung durch den Hersteller. Zuwiderhandlungen verpflichten zu Schadenersatz.

Änderungsvorbehalt

Jegliche Änderungen, die dem technischen Fortschritt dienen, vorbehalten.

Dokumenteninformation

Ausgabe-/Rev.-Datum: 11.12.2017

Dokument-/Rev.-Nr.: TR - ELE - BA - D - 0011 - 07 TR_-ELE-BA-D-0011-07.docx

Verfasser: MÜJ

Schreibweisen

*Kursiv*e oder **fette** Schreibweise steht für den Titel eines Dokuments oder wird zur Hervorhebung benutzt.

Courier-Schrift zeigt Text an, der auf dem Display bzw. Bildschirm sichtbar ist und Menüauswahlen von Software.

" < > " weist auf Tasten der Tastatur Ihres Computers hin (wie etwa <RETURN>).

Inhaltsverzeichnis

haltsverzeichnis	
Änderungs-Index	5
1 Allgemeines	6
1.1 Geltungsbereich	6
1.2 Verwendete Abkürzungen / Begriffe	7
2 Zusätzliche Sicherheitshinweise	8
2.1 Symbol- und Hinweis-Definition	8
2.2 Ergänzende Hinweise zur bestimmungsgemäßen Verwendung	8
2.3 Organisatorische Maßnahmen	9
3 SSI Informationen	10
4 Installation / Inbetriebnahmevorbereitung	11
4.1 Grundsätzliche Regeln	11
4.2 RS422 Übertragungstechnik	12
4.3 Anschluss	13
4.3.1 Versorgungsspannung	
4.3.2 SSI-Schnittstelle	
4.3.3 Schalteingang/Schaltausgang	
4.3.4 RS485-Programmier-Schnittstelle	
4.4 Schirmauflage - Steckermontage	
4.5 Anbindung an den PC (Programmierung)	
4.6 Verdrahtungsbeispiel	
4.7 SSI Schnittstelle	18
5 Konfiguration / Parametrierung über TRWinProg	20
5.1 Grundparameter	
5.1.1 Zählrichtung	
5.1.2 Auflösung	
5.1.3 Mess-Dynamic	
5.1.4 Messwert-Ausgabe-Zeit5.1.5 Physikalische Auflösung	
5.2 SSI-Schnittstelle	
5.2.1 Anzahl Datenbits	
5.2.2 Code	
5.2.3 Fehler-Bit SSI	
5.2.4 Ausgabewert SSI	22

Inhaltsverzeichnis

5.3 Fehlerbehandlung	23
5.3.1 Fehlerausgang	23
5.3.2 Ausgangspegel Fehlerausgang	23
5.3.3 Fehlerquittierung	23
5.3.4 Ausgabewert bei Fehler	24
5.3.5 Warnbit Temperatur ab	24
5.3.6 Warnbit Intensität unter	24
5.4 Preset	25
5.4.1 Funktion ext. Eingang (Schalteingang)	25
5.4.2 Aktive Eingangs-Flanke	
5.4.3 Eingangs-Aktiv-Zeit	26
5.4.4 Preset-Wert	26
5.4.5 Preset rücksetzen	26
5.5 Istwerte	27
5.5.1 Position	27
5.5.2 Gerätestatus	27
5.5.3 Hardware-Info	28
5.6 Geschwindigkeit	29
5.6.1 Geschwindigkeitswerte	
5.6.2 Dynamic	
5.6.3 Ausgabe-Format	
5.6.4 Vorzeichen	
6 Fehlerursachen und Abhilfen	30
Anhang:	
Steckerbelegung	Nr.: 3296
Downloads: <u>www.tr-electronic.de/service/downloads/steckerbeleg</u>	ungen.html
Zeichnung Download:	K2200-005

Änderungs-Index

Änderung		Index
Erstausgabe	09.10.03	00
Anpassung des Laser-Warnschildes	18.12.03	01
 Anpassung der Laser-Norm DIN EN 60825-1 Warnbit "Plausibilität Messwert" Zusätzliche Reflektoren Max. Reichweite 240 m Parameteranpassung 	20.12.07	02
Einführung neuer ReflektorenPhysikalische Auflösung = 0,1mm	05.02.09	03
 Allgemeine Überarbeitung Warnhinweise aktualisiert Montage entfernt 	25.03.13	04
Neues DesignLaser Lebensdauer	20.02.15	05
Kapitel "Grundsätzliche Regeln" hinzugefügt	22.02.16	06
Technische Daten entfernt	11.12.17	07

1 Allgemeines

Das vorliegende schnittstellenspezifische Benutzerhandbuch beinhaltet folgende Themen:

- Ergänzende Sicherheitshinweise zu den bereits in der Montageanleitung definierten grundlegenden Sicherheitshinweisen
- Installation
- Inbetriebnahme
- Fehlerursachen und Abhilfen

Da die Dokumentation modular aufgebaut ist, stellt dieses Benutzerhandbuch eine Ergänzung zu anderen Dokumentationen wie z.B. Produktdatenblätter, Maßzeichnungen, Prospekte und der Montageanleitung etc. dar.

Das Benutzerhandbuch kann kundenspezifisch im Lieferumfang enthalten sein, oder kann auch separat angefordert werden.

1.1 Geltungsbereich

Dieses Benutzerhandbuch gilt ausschließlich für folgende Mess-System-Baureihen mit **SSI** Schnittstelle:

LE-200

Die Produkte sind durch aufgeklebte Typenschilder gekennzeichnet und sind Bestandteil einer Anlage.

Es gelten somit zusammen folgende Dokumentationen:

 siehe Kapitel "Mitgeltende Dokumente" in der Montageanleitung www.tr-electronic.de/f/TR-ELE-BA-DGB-0018

1.2 Verwendete Abkürzungen / Begriffe

LE-200	Laser-Entfernungs-Messgerät, Baureihe LE-200
CRC	Cylic Redundancy Check (Redundanzprüfung)
SSI	Synchron-Serielles-Interface
LSB	Least Significant Bit (niederwertiges Bit)
MSB	Most Significant Bit (höchstwertiges Bit)
Т	Periodendauer
t _M	SSI Monozeit
t _p	Pausenzeit
t _V	Verzögerungszeit
VZ	Vorzeichen
0x	Hexadezimale Darstellung

2 Zusätzliche Sicherheitshinweise

2.1 Symbol- und Hinweis-Definition

AWARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

bedeutet, dass ein Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

bezeichnet wichtige Informationen bzw. Merkmale und Anwendungstipps des verwendeten Produkts.

2.2 Ergänzende Hinweise zur bestimmungsgemäßen Verwendung

Das Mess-System wird zur Erfassung von Linearbewegungen sowie der Aufbereitung der Messdaten für eine nachgeschaltete Steuerung mit einer synchron-seriellen Schnittstelle (SSI) verwendet.

Insbesondere ist das Mess-System konzipiert für den Einsatz von Entfernungsmessungen zur Lageerkennung und Positionierung von:

- Regalbediengeräten und Hubwerken in Hochregallagern
- Krananlagen
- Verschiebewagen und Flurförderfahrzeuge
- Transfermaschinen

Zur bestimmungsgemäßen Verwendung gehört auch:

- das Beachten aller Hinweise aus diesem Benutzerhandbuch,
- das Beachten der Montageanleitung, insbesondere das dort enthaltene Kapitel "*Grundlegende Sicherheitshinweise"* muss vor Arbeitsbeginn gelesen und verstanden worden sein

2.3 Organisatorische Maßnahmen

- Dieses Benutzerhandbuch muss ständig am Einsatzort des Mess-Systems griffbereit aufbewahrt werden.
- Das mit T\u00e4tigkeiten am Mess-System beauftragte Personal muss vor Arbeitsbeginn
 - die Montageanleitung, insbesondere das Kapitel "Grundlegende Sicherheitshinweise",
 - und dieses Benutzerhandbuch, insbesondere das Kapitel "Zusätzliche Sicherheitshinweise",

gelesen und verstanden haben.

Dies gilt in besonderem Maße für nur gelegentlich, z. B. bei der Parametrierung des Mess-Systems, tätig werdendes Personal.

3 SSI Informationen

Das SSI-Verfahren ist ein synchron-serielles Übertragungsverfahren für die Mess-System-Position. Durch die Verwendung der RS422 Schnittstelle zur Übertragung können ausreichend hohe Übertragungsraten erzielt werden.

Das Mess-System erhält vom Datenempfänger (Steuerung) ein Taktbüschel und antwortet mit dem aktuellen Positionswert, der synchron zum gesendeten Takt seriell übertragen wird.

Weil die Datenübernahme durch den Büschelanfang synchronisiert wird, ist es nicht notwendig, einschrittige Codes wie z.B. Graycode zu verwenden.

Die Datensignale Daten+ und Daten- werden mit Kabelsendern (RS422) gesendet. Zum Schutz gegen Beschädigungen durch Störungen, Potenzialdifferenzen oder Verpolen werden die Taktsignale Takt+ und Takt- mit Optokopplern empfangen.

Zur Erkennung von fehlerhaften Übertragungen können Parities oder Prüfsummen hinzugefügt werden. Als einfachste Maßnahme ist auch die doppelte Einlesung möglich, bei der die Datenbits nach jeweils 26 Takten eines Büschels wiederholt werden. Von Nachteil ist aber die stark erhöhte Übertragungsdauer.

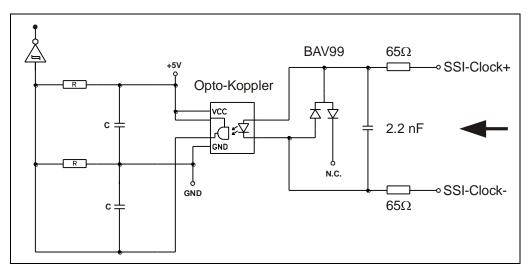


Abbildung 1: SSI Prinzip-Eingangsschaltung

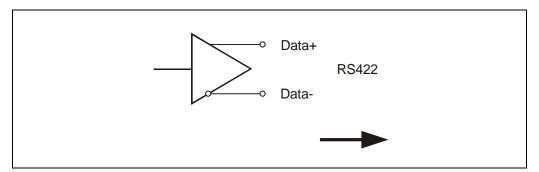


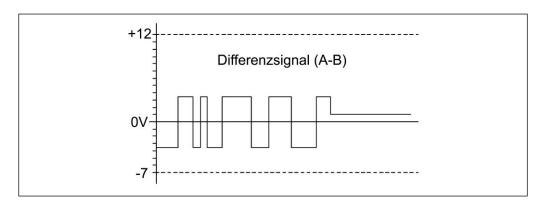
Abbildung 2: SSI-Ausgangsschaltung

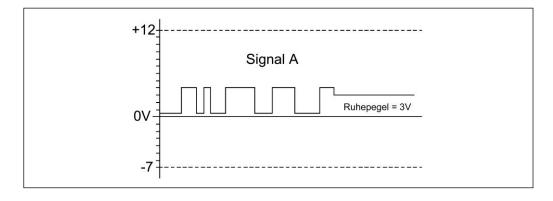
4 Installation / Inbetriebnahmevorbereitung

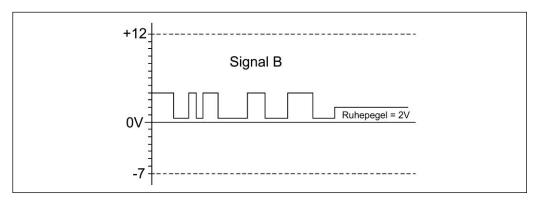
4.1 Grundsätzliche Regeln

- Die Schirmwirkung von Kabeln muss auch nach der Montage (Biegeradien/Zugfestigkeit!) und nach Steckerwechseln garantiert sein. Im Zweifelsfall ist flexibleres und höher belastbares Kabel zu verwenden.
- Für den Anschluss des Mess-Systems sind nur Steckverbinder zu verwenden, die einen guten Kontakt vom Kabelschirm zum Steckergehäuse gewährleisten. Der Kabelschirm ist mit dem Steckergehäuse großflächig zu verbinden.
- Bei der Antriebs-/Motorverkabelung wird empfohlen, ein 5-adriges Kabel mit einem vom N-Leiter getrennten PE-Leiter (sogenanntes TN-Netz) zu verwenden. Hierdurch lassen sich Potenzialausgleichsströme und die Einkoppelung von Störungen weitgehend vermeiden.
- Für die gesamte Verarbeitungskette der Anlage müssen Potenzialausgleichsmaßnahmen vorgesehen werden. Insbesondere müssen Ausgleichsströme infolge von Potenzialunterschieden über den Schirm zum Mess-System vermieden werden.
- Um eine hohe Störfestigkeit des Systems gegen elektromagnetische Störstrahlungen zu erzielen, muss eine geschirmte und verseilte Datenleitung verwendet werden. Der Schirm sollte möglichst beidseitig und gut leitend über großflächige Schirmschellen an Schutzerde angeschlossen werden. Nur wenn die Maschinenerde gegenüber der Schaltschrankerde stark mit Störungen behaftet ist, sollte man den Schirm einseitig im Schaltschrank erden.
- Getrennte Verlegung von Kraft- und Signalleitungen. Bei der Installation sind die nationalen Sicherheits- und Verlegerichtlinien für Daten- und Energiekabel zu beachten.
- Keine Stichleitungen
- Trennung bzw. Abgrenzung des Mess-Systems von möglichen Störsendern.
- Beachtung der Herstellerhinweise bei der Installation von Umrichtern, Schirmung der Kraftleitungen zwischen Frequenzumrichter und Motor.
- Ausreichende Bemessung der Energieversorgung.
- Um einen sicheren und störungsfreien Betrieb zu gewährleisten, sind die einschlägigen Normen und Richtlinien zu beachten. Insbesondere sind die EMV-Richtlinie sowie die Schirmungs- und Erdungsrichtlinien in den jeweils gültigen Fassungen zu beachten.
- Es wird empfohlen, nach Abschluss der Montagearbeiten eine visuelle Abnahme mit Protokoll zu erstellen.

4.2 RS422 Übertragungstechnik

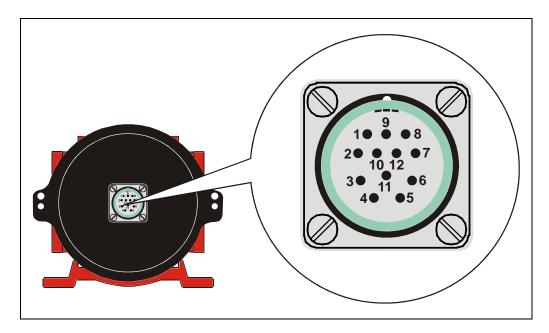

Bei der RS422-Übertragung wird ein Leitungspaar für die Signale Daten+ und Daten- und ein Leitungspaar für die Signale Takt+ und Takt- benötigt.


Die seriellen Daten werden ohne Massebezug als Spannungsdifferenz zwischen zwei korrespondierenden Leitungen übertragen.


Der Empfänger wertet lediglich die Differenz zwischen beiden Leitungen aus, so dass Gleichtakt-Störungen auf der Übertragungsleitung nicht zu einer Verfälschung des Nutzsignals führen.

Durch die Verwendung von abgeschirmtem, paarig verseiltem Kabel, lassen sich Datenübertragungen über Distanzen von bis zu 500 Metern bei einer Frequenz von 100 kHz realisieren.

RS422-Sender stellen unter Last Ausgangspegel von \pm 2V zwischen den beiden Ausgängen zur Verfügung, die Empfängerbausteine erkennen Pegel von \pm 200mV noch als gültiges Signal.



11.12.2017

4.3 Anschluss

4.3.1 Versorgungsspannung

Pin 11 Standard: 18 - 27 V DC

Gerät mit Heizung: 24 V DC (±5%)

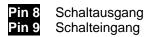
Pin 12 0V, GND

Kabelspezifikation: min. 0.34 mm² (empfohlen 0.5 mm²) und geschirmt. Generell ist der Kabelquerschnitt mit der Kabellänge abzugleichen.

4.3.2 SSI-Schnittstelle

Kabelspezifikation: min. 0.25 mm² und geschirmt. Zur Sicherstellung der Signalqualität und zur Minimierung möglicher Umwelteinflüsse wird jedoch empfohlen, zusätzlich ein paarig verseiltes Kabel zu verwenden.

4.3.3 Schalteingang/Schaltausgang

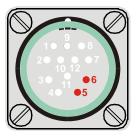

Die Programmierung des Schalteingangs/Schaltausgangs wird direkt über die PC-Software "TRWinProg" vorgenommen.

Funktionen Schalteingang:

Preset Abschalten der Laserdiode Fehler rücksetzen

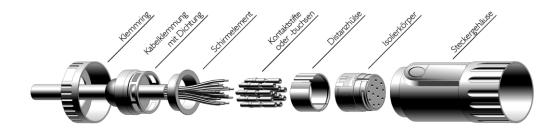
Funktionen Schaltausgang:

Temperatur-, Intensitäts-Hardware-Fehlerausgang jeder Fehler Geschwindigkeits-Check Plausibilität Messwert Schaltausgang Position



4.3.4 RS485-Programmier-Schnittstelle

Über die PC-Software "TRWinProg" und einem PC-Adapter wird die Verbindung zum Laser-Entfernungs-Messgerät hergestellt. Nähere Hinweise siehe Seite Kap. 4.5 und 4.6 oder im Handbuch der TRWinProg-Software.



Kabelspezifikation: min. 0.25 mm² und geschirmt. Zur Sicherstellung der Signalqualität und zur Minimierung möglicher Umwelteinflüsse wird jedoch empfohlen, zusätzlich ein paarig verseiltes Kabel zu verwenden.

4.4 Schirmauflage - Steckermontage

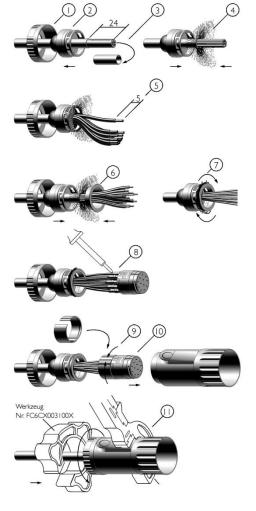
Schritt A:

- 1.-2. Klemmring und Kabelklemmung mit Dichtung auf Kabel schieben.
 (Bei Bedarf erleichtert Einführdorn Best.-Nr. FC6CX004I00X das Aufschieben der Dichtung)
- 3. Kabel auf 24 mm entmanteln
- 4. Schirm über Kabel zurückschieben

Schritt B:

5. Adern 5 mm abisolieren.

Schritt C:

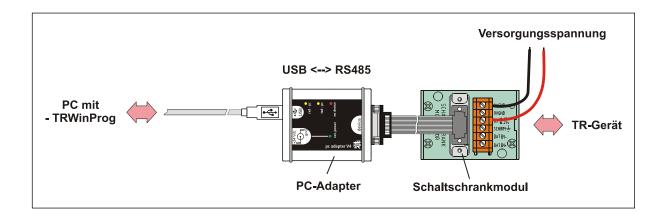

- **6.** Schirmelement aufsetzen.
- 7. Überstehende Schirmung um Schirmelement wickeln.

Schritt D:

8. Adern in Kontakte löten.

Schritt E:

- **9.** Distanzhülse auf Isolierkörper aufschnappen.
- **10.** Isolierkörper mit Codiernut in Steg des Steckergehäuses schieben.
- **11.** Klemmung auf Steckergehäuse ufschrauben.


4.5 Anbindung an den PC (Programmierung)

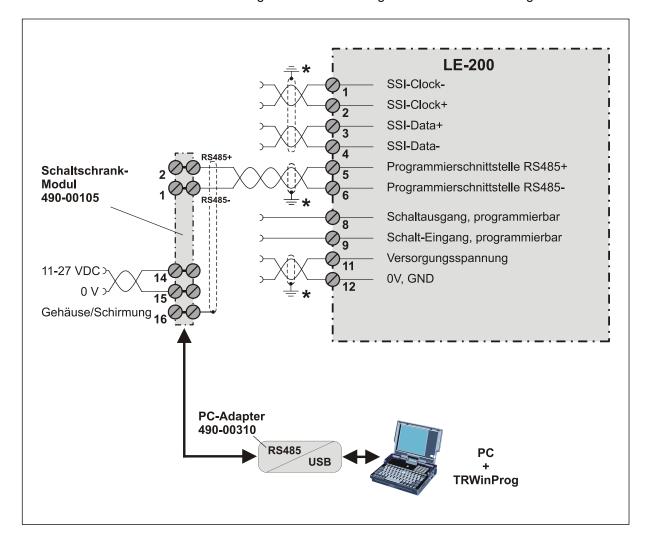
Was wird von TR-Electronic benötigt?

Schaltschrankmodul Art.-Nr.: 490-00101

> Programmier-Set Art.-Nr.: 490-00310:

- Kunststoff-Koffer, mit nachfolgenden Komponenten:
 - USB PC-Adapter V4Umsetzung USB <--> RS485
 - USB-Kabel 1,00 m
 Verbindungskabel zwischen
 PC-Adapter und PC
 - Flachbandkabel 1,30 m
 Verbindungskabel zwischen
 PC-Adapter und TR-Schaltschrank-Modul (15-pol. SUB-D Buchse/Stecker)
 - Steckernetzteil 24 V DC, 1A
 Versorgungsmöglichkeit des angeschlossenen Gerätes über den PC-Adapter
 - Software- und Support-DVD
 - USB-Treiber, Soft-Nr.: 490-00421
 TRWinProg, Soft-Nr.: 490-00416
 EPROGW32, Soft-Nr.: 490-00418
 LTProg, Soft-Nr.: 490-00415
 - Installationsanleitung <u>TR-E-TI-DGB-0074</u>, Deutsch/Englisch

Für den Betrieb ab Windows 7 wird der USB PC-Adapter HID V5 / SSI, Art-Nr.: 490-00313 / 490-00314 mit Installationsanleitung TR-E-TI-DGB-0103 benötigt.


11.12.2017

4.6 Verdrahtungsbeispiel

* Schirmauflage, siehe Kap. Schirmauflage - Steckermontage Seite 15

RS485 / SSI - Anbindung mit Parametriermöglichkeit über "TRWinProg"

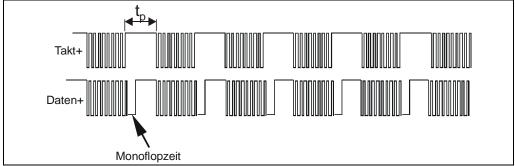
4.7 SSI Schnittstelle

Im Ruhezustand liegen Daten+ und Takt+ auf High. Dies entspricht der Zeit vor Punkt im unten angegebenen Schaubild.

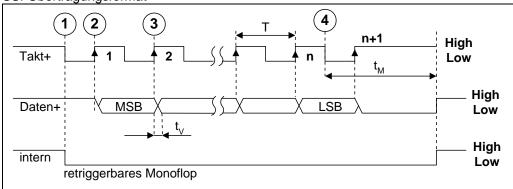
Mit dem ersten Wechsel des Takt-Signals von High auf Low (1) wird das Geräteinterne retriggerbare Monoflop mit der Monoflopzeit t_M gesetzt.

Die Zeit t_M ist auf 20 μ s eingestellt und bestimmt die unterste Übertragungsfrequenz von ca. 80 kHz. Die obere Grenzfrequenz ergibt sich aus der Summe aller Signallaufzeiten und wird zusätzlich durch die eingebauten Filterschaltungen auf ca. 820 kHz begrenzt.

Mit jeder weiteren fallenden Taktflanke verlängert sich der aktive Zustand des Monoflops um weitere 20µs, zuletzt ist dies bei Punkt (4) der Fall.

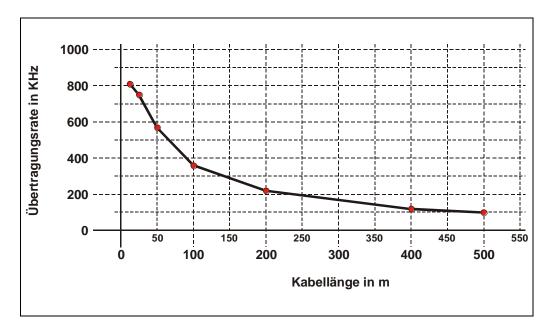

Mit dem Setzen des Monoflops (1) werden die am internen Parallel-Seriell-Wandler anstehenden bit-parallelen Daten durch ein intern erzeugtes Signal in einem Eingangs-Latch des Schieberegisters gespeichert. Damit ist sichergestellt, dass sich die Daten während der Übertragung eines Positionswertes nicht mehr verändern.

Mit dem ersten Wechsel des Taktsignals von Low auf High (2) wird das höchstwertige Bit (MSB) der Geräteinformation an den seriellen Datenausgang gelegt. Mit jeder weiteren steigenden Flanke wird das nächst niederwertigere Bit an den Datenausgang geschoben.


Nach beendeter Taktfolge werden die Datenleitungen für die Dauer der Monozeit t_M [4] auf 0V (Low) gehalten. Dadurch ergibt sich auch die Pausenzeit t_p , die zwischen zwei aufeinanderfolgenden Taktsequenzen eingehalten werden muss und beträgt >20 μ s.

Bedingt durch die Verzögerungszeit t, (ca. 100ns, ohne Kabel) darf die Auswerteelektronik erst zum Zeitpunkt (3) die Daten einlesen. Dies entspricht der zweiten ansteigenden Taktflanke. Aus diesem Grund muss die Taktanzahl immer um eins höher sein als die zu übertragende Anzahl der Datenbits.

Typische SSI-Übertragungssequenzen


SSI-Übertragungsformat

Die maximale Leitungslänge hängt von der SSI-Taktfrequenz ab und sollte an folgendes Diagramm bzw. Tabelle angepasst werden.

Zu beachten ist, dass pro Meter Kabel mit einer zusätzlichen Verzögerungszeit von ca. 6ns zu rechnen ist.

Leitungslänge [m]	SSI-Taktfrequenz [kHz]
12,5	810
25	750
50	570
100	360
200	220
400	120
500	100

5 Konfiguration / Parametrierung über TRWinProg

5.1 Grundparameter

5.1.1 Zählrichtung

Die Zählrichtung definiert, ob steigende oder fallende Positionswerte ausgegeben werden.

Auswahl	Beschreibung	Default
Steigend	Mit zunehmender Distanz zum Mess-System, Werte steigend	X
Fallend	Mit zunehmender Distanz zum Mess-System, Werte fallend	

5.1.2 Auflösung

Festlegung der Mess-Systemauflösung.

Auswahl	Default
10 mm	
1 mm	Х
1/10 mm	
1/100 mm	
1 Inch	
1/10 Inch	
1/8 mm	
Freie Auflösung (in 1/100 mm) von 1 - 65535 1 mm z.B. entspricht dem Eingabewert 100. Dies bedeutet, dass der Laser 1 Schritt / mm ausgibt.	100

5.1.3 Mess-Dynamic

Mess-Dynamic ist ein Parameter, der die mathematische Aufbereitung der Messwerte charakterisiert, bei hoher Mess-Dynamic ist der Messwert ohne jegliche mathematische Nachbehandlung, das hat ein größeres Messwert-Rauschen zur Folge, bei geringer Mess-Dynamic ist das Messwert-Rauschen deutlich verringert, hat dadurch aber auch Verzögerungen bei der Messwert-Berechnung zur Folge.

Auswahl	Default
gering	
mittel	Х
hoch	

5.1.4 Messwert-Ausgabe-Zeit

Die Messwert-Ausgabe-Zeit definiert die Zeit für die Berechnung eines Messwertes.

Auswahl	Default
1 ms	X
2 ms	
3 ms	
4 ms	
5 ms	
6 ms	
7 ms	
8 ms	
9 ms	
10 ms	
15 ms	
20 ms	
25 ms	
30 ms	
50 ms	
100 ms	
200 ms	
500 ms	

5.1.5 Physikalische Auflösung

Die physikalische Auflösung des Mess-Systems ist die kleinste mögliche Auflösung, mit der der Messwert erzeugt werden kann.

Auswahl	Default
0,76 mm	Χ
0,1 mm	

5.2 SSI-Schnittstelle

5.2.1 Anzahl Datenbits

Die Anzahl Datenbits definiert die max. Anzahl der zu übertragenden Datenbits auf der SSI-Schnittstelle. Ein eventuell definiertes Fehler-Bit ist darin nicht mit enthalten.

Auswahl	Beschreibung	Default
12 Bit	Anzahl SSI-Datenbits = 12	
24 Bit	Anzahl SSI-Datenbits = 24	X
25 Bit	Anzahl SSI-Datenbits = 25	
26 Bit	Anzahl SSI-Datenbits = 26	
27 Bit	Anzahl SSI-Datenbits = 27	
28 Bit	Anzahl SSI-Datenbits = 28	
29 Bit	Anzahl SSI-Datenbits = 29	
30 Bit	Anzahl SSI-Datenbits = 30	
31 Bit	Anzahl SSI-Datenbits = 31	
32 Bit	Anzahl SSI-Datenbits = 32	

5.2.2 Code

Definiert den SSI-Ausgabe-Code.

Auswahl	Beschreibung	Default
Gray	SSI-Ausgabecode = Gray	X
Binär	SSI-Ausgabecode = binär	

5.2.3 Fehler-Bit SSI

Das SSI-Fehlerbit ist ein zusätzliches Bit im SSI-Protokoll und wird nach dem "LSB-Bit" angehängt. Fehlerdefinition siehe "Gerätestatus", Seite 27.

Auswahl	Default
gesperrt	X
Temperatur	
Intensität	
Hardware	
Jeder Fehler	
Plausibilität Messwert	

5.2.4 Ausgabewert SSI

Der Ausgabewert SSI legt den Wert fest, der auf der SSI-Schnittstelle ausgegeben werden soll.

Beschreibung	Default
Ausgabe des Laser-Istwertes	X
Ausgabe des Laser-Intensitätswertes	
Ausgabe der Laser-Istgeschwindigkeit	
21 Bit Positionsdaten, 11 Bit Geschwin-	
	Ausgabe des Laser-Istwertes Ausgabe des Laser-Intensitätswertes Ausgabe der Laser-Istgeschwindigkeit

11.12.2017

5.3 Fehlerbehandlung

5.3.1 Fehlerausgang

Legt die Funktion des Fehlerausgangs (Schaltausgang) fest. Fehlerdefinition siehe "Gerätestatus", Seite 27.

Auswahl	Default
gesperrt	X
Temperaturfehler	
Intensitätsfehler	
Hardware-Fehler	
Jeder Fehler	
Geschwindigkeits-Check	
Plausibilität Messwert	
Schaltausgang Position	

5.3.2 Ausgangspegel Fehlerausgang

Legt den aktiven Ausgangspegel bei Auftreten des ausgewählten Fehlers fest.

Auswahl	Beschreibung	Default
aktiv HIGH	Fehler vorhanden, Schaltausgang = HIGH	Х
aktiv LOW	Fehler vorhanden, Schaltausgang = LOW	

5.3.3 Fehlerquittierung

Legt fest, ob auftretende Fehlermeldungen nach Beheben der Störung automatisch gelöscht werden sollen.

Auswahl	Beschreibung	Default
automatisch	Eine auftretende Fehlermeldung wird nach	V
automatisch	Behebung des Fehlers automatisch gelöscht.	^
nicht automatisch	Eine auftretende Fehlermeldung kann nur über den externen Schalteingang gelöscht werden (siehe "Funktion ext. Eingang (Schalteingang)", Seite 25).	

5.3.4 Ausgabewert bei Fehler

Legt fest, welcher Datenwert als Positionswert im Fehlerfall übertragen werden soll. Der Datenwert wird ausgegeben, wenn der Laser keinen Messwert mehr ausgeben kann. Dies ist z.B. gegeben, wenn eine Strahlunterbrechung vorliegt.

Auswahl	Beschreibung	Default
Null	Die Position wird auf Null gesetzt	Χ
0xFF	Alle 24 Bit werden auf '1' gesetzt (0xFFFFFF oder -1)	
letzt. gült. Wert	Es wird die letzte gültige Position ausgegeben	

5.3.5 Warnbit Temperatur ab

Legt fest, ab welcher Temperatur das Warnbit bzw. Schaltausgang gesetzt wird.

Auswahl	Beschreibung	Default
47	Meldung, wenn Geräte-Temperatur ≥ 47 °C	
48	Meldung, wenn Geräte-Temperatur ≥ 48 °C	
49	Meldung, wenn Geräte-Temperatur ≥ 49 °C	
50	Meldung, wenn Geräte-Temperatur ≥ 50 °C	Х

5.3.6 Warnbit Intensität unter

Legt fest, ab welchem Intensitätswert des Laserstrahls das Warnbit bzw. Schaltausgang gesetzt wird.

Eingabe	Beschreibung	Default
1 – 100 [%]	Meldung, wenn Intensitätswert < Eingabewert	12 %

5.4 Preset

5.4.1 Funktion ext. Eingang (Schalteingang)

Gefahr von Körperverletzung und Sachschaden durch einen Istwertsprung bei Ausführung der Preset Funktion!

• Die Preset Funktion sollte nur im Stillstand ausgeführt werden, bzw. muss der resultierende Istwertsprung programmtechnisch und anwendungstechnisch erlaubt sein!

Legt fest, ob der Schalteingang als Preset-Eingang Abschaltung der Laserdiode (LD) oder Fehler-Quittierungs-Eingang benutzt werden soll. Beim Beschalten des Schalteingangs als Preset-Eingang wird der Laser auf den unter Kap. "Preset-Wert", Seite 26 vorgegebenen Positionswert justiert. Beim Beschalten des Schalteingangs als LD-Schalteingang wird die Laserdiode zur Verlängerung der Lebensdauer abgeschaltet. Wenn im PC-Programm "TRWinProg" in den Grundparametern das Abschalten der Laserdiode automatisch vorgenommen wird, hat der LD-Schalteingang keine Funktion.

Auswahl	Beschreibung	Default
gesperrt	Funktion abgeschaltet, nachfolgende Parameter ohne Bedeutung	Χ
Preset-Funktion	Externer Schalteingang wird als Preset-Eingang festgelegt.	
LD-Schalteingang	Externer Schalteingang wird zur Abschaltung der Laserdiode benutzt.	
Fehler-Quittierung	Externer Schalteingang wird zur Quittierung eines auftretenden Fehlers benutzt.	

5.4.2 Aktive Eingangs-Flanke

Legt fest, ob die Funktion des Schalteingangs mit einer steigenden oder fallenden Flanke am Schalteingang ausgelöst wird.

Auswahl	Beschreibung	Default
Low->High	Funktionsauslösung mit steigender Flanke	X
High->Low	Funktionsauslösung mit fallender Flanke	

5.4.3 Eingangs-Aktiv-Zeit

Legt die Ansprechzeit von der Schaltflanke des Schalteingangs bis zur tatsächlichen Ausführung fest. Dieser Parameter dient der Entstörung des Signals am Schalteingang.

Auswahl	Beschreibung	Default
100 ms	Ansprechzeit = 100 ms	Х
200 ms	Ansprechzeit = 200 ms	
500 ms	Ansprechzeit = 500 ms	
1000 ms	Ansprechzeit = 1000 ms	

5.4.4 Preset-Wert

Festlegung des Positionswertes, auf welchen der Laser justiert wird, wenn die Presetfunktion ausgeführt wird (siehe "Funktion ext. Eingang (Schalteingang)", Seite 25). Der Wert muss sich innerhalb des Messbereichs des Lasers befinden (siehe "Reichweite" im produktspezifischen Datenblatt). **Defaultwert = 0**.

5.4.5 Preset rücksetzen

Gefahr von Körperverletzung und Sachschaden durch einen Istwertsprung bei Ausführung der Funktion Preset löschen!

• Die Funktion Preset löschen sollte nur im Stillstand ausgeführt werden, bzw. muss der resultierende Istwertsprung programmtechnisch und anwendungstechnisch erlaubt sein!

Über diesen Parameter wird die errechnete Nullpunktkorrektur gelöscht (Differenz des gewünschten Presetwertes zur physikalischen Laserposition). Nach dem Löschen der Nullpunktkorrektur gibt der Laser seine "echte" physikalische Position aus. Mit der Einstellung = "Ja" kann kein Preset/Justage durchgeführt werden.

Auswahl	Beschreibung	Default
Ja	Preset löschen	X
Nein	Preset nicht löschen	

5.5 Istwerte

In diesem Register werden alle für den Betrieb benötigten Parameter angezeigt:

- Position, mit der in den Grundparametern eingestellten Auflösung
- Intensität [%]
- Geräte-Temperatur [°C]
- Geschwindigkeit, mit dem unter Geschwindigkeit eingestellten Ausgabe-Format
- Gerätestatus
- Hardware-Info

5.5.1 Position

Durch Schreiben eines Wertes in das Feld Position kann der Laser auf den gewünschten Positionswert gesetzt werden. Die Ausführung erfolgt mit Übertragung der Werte an das Laser-Entfernungs-Messgerät.

Der Wert muss sich innerhalb des Messbereichs des Lasers befinden (siehe "Reichweite" im produktspezifischen Datenblatt).

5.5.2 Gerätestatus

Der Gerätestatus zeigt den momentanen Zustand des Gerätes an und ist bitweise codiert:

Fehler-Code	Beschreibung
Intensität Bit 0	Das Bit wird gesetzt, wenn ein Intensitätswert von kleiner 8% vorliegt, bzw. der Laserstrahl unterbrochen wird und führt zur Fehlerwertausgabe (siehe Kap. "5.3.4", Seite 24).
Temperatur Bit 1	Das Bit wird gesetzt, wenn die Geräte-Temperatur außerhalb des Bereichs von 0 - 50 °C liegt. Eine geringe Bereichsabweichung hat noch keinen Einfluss auf den Messwert und ist daher als Warnung anzusehen.
Hardware Bit 2	Das Bit wird gesetzt, wenn ein interner Hardwarefehler festgestellt wurde und führt zur Fehlerwertausgabe (siehe Kap. "5.3.4", Seite 24).
Laserdiode abgeschaltet Bit 3	Das Bit wird gesetzt, wenn die Laserdiode über den Schalteingang abgeschaltet wurde. Dient nur zu Informationszwecken.
Warnbit Intensität Bit 4	Das Bit wird gesetzt, wenn ein Intensitätswert von kleiner 12% festgestellt wurde und zeigt an, dass die Mess-System-Optik, bzw. die Reflexionsfolie zu reinigen ist. Das Gerät arbeitet aber weiterhin fehlerfrei.
Warnbit Geschwindigkeits- Überschreitung Bit 5	Das Bit wird gesetzt, wenn die über das PC-Programm TRWinProg eingestellte Geschwindigkeit überschritten wird. Über die Default-Einstellung ist der Geschwindigkeits-Check ausgeschaltet.
Warnbit Plausibilität Messwert Bit 6	Das Bit wird gesetzt, wenn die Plausibilität des Messwertes nicht garantiert werden kann. Dies ist z.B. bei einem Positionssprung der Fall, wenn eine zweite Reflexionsfolie in den Laserstrahl gehalten wird.

5.5.3 Hardware-Info

Die Hardware-Info bezieht sich auf Bit zwei "Hardware-Fehler" im Gerätestatus und spezifiziert den Hardware-Fehler im Detail.

Fehler-Code
Bit 0, Fehler Feldbus-Chip
Bit 1, undefinierte Messlänge
Bit 2, Fehler Temperatur-Sensor
Bit 3, Fehler ext. Flash

5.6 Geschwindigkeit

5.6.1 Geschwindigkeitswerte

Einstellung der Geschwindigkeitsstufe. Bei Erreichen der eingestellten Geschwindigkeitsstufe wird dies mit Setzen des Schaltausgangs gemeldet. Hierfür muss über die Funktion des Schaltausgangs der "Geschwindigkeits-Check" vorgewählt sein (siehe "Fehlerausgang", Seite 23).

Auswahl	Beschreibung	Default
0	Funktion ausgeschaltet	Х
freie Eingabe von 1 bis 200	Geschwindigkeit in 0,1 m/s	

5.6.2 Dynamic

Zeitkonstante zur Berechnung der Geschwindigkeit.

Auswahl	Beschreibung	Default
Auto-Dynamic	Dynamische Anpassung der Zeitverzögerung in Abhängigkeit der Geschwindigkeit.	X
Bereich 1	geringe Verzögerung, höheres Rauschen	
Bereich 2	mittlere Verzögerung, mittlere Rauschen	
Bereich 3	höhere Verzögerung, geringes Rauschen	

5.6.3 Ausgabe-Format

Festlegung des Ausgabeformats für die unter dem Programmreiter ${\it Istwerte}$ angezeigte Geschwindigkeit.

Auswahl	Beschreibung	Default
1 mm / sec	Ausgabe der Geschwindigkeit in 1 mm/s	
10 mm / sec	Ausgabe der Geschwindigkeit in 10 mm/s	X

5.6.4 Vorzeichen

Festlegung, ob die unter dem Programmreiter Istwerte angezeigte Geschwindigkeit mit Vorzeichen, oder ohne Vorzeichen ausgegeben werden soll.

Auswahl	Beschreibung	Default
kein Vorzeichen, immer positiv	Ausgabe ohne Vorzeichen	Х
richtungsabhängiges Vorzeichen	Ausgabe als Betrag mit Vorzeichen	

6 Fehlerursachen und Abhilfen

Die Fehlerursachen sind unter Kap. "Gerätestatus", Seite 27 festgelegt. Für die Rücksetzung der Fehlermeldungen muss je nach Einstellung der Fehler eventuell quittiert werden, siehe Kap. "Fehlerquittierung", Seite 23.

Fehlercode	Ursache	Abhilfe	
Bit 0 Intensitäts-Fehler	Das Gerät prüft fortwährend die Intensität des empfangenen Lasersignals, dabei wurde eine Intensitätsunter-	Messsystem-Optik reinigen Reflexionsfolie reinigen Eine Unterbrechung des Laserstrahls ausschließen Kann eine Verschmutzung oder eine Unterbrechung des	
	schreitung festge- stellt.	Lasersignals ausgeschlossen werden, muss das Gerät getauscht werden.	
Bit 1 Geräte-Temperatur	Der Temperaturbe- reich von 0 - 50°C am Gerätegehäuse wurde unter- bzw. überschritten.	Es müssen geeignete Maßnahmen ergriffen werden, damit das Gerät nicht überhitzt bzw. unterkühlt werden kann.	
Bit 2 Hardware-Fehler	Das Gerät hat einen internen Hardware-fehler festgestellt	Tritt der Fehler wiederholt auf, muss das Gerät getauscht werden.	
Bit 3 Laserdiode ist abge- schaltet	Laserdiode wurde über den Bus, bzw. über den Schaltein- gang "LD-Schaltein- gang" abgeschaltet.	Dient nur zu Informationszwecken, ob die Laserdiode abgeschaltet ist.	
Bit 4 Intensitäts-Warnung	Das Gerät hat eine Intensität von <12% festgestellt.	Diese Meldung ist nur eine Warnung und zeigt an, dass die Mess-System-Optik, bzw. die Reflexionsfolie zu reinigen ist. Das Gerät arbeitet aber weiterhin fehlerfrei.	
Bit 5 Warnbit Geschwindigkeits- Überschreitung	Die über das PC- Programm TRWinProg eingestellte Geschwin- digkeits-Stufe wurde überschritten.	Diese Meldung ist eine Warnung und zeigt an, dass eventuell entsprechende Maßnahmen ergriffen werden müssen, damit keine Anlagenteile beschädigt werden.	
Bit 6 Warnbit Plausibilität Messwert	Die Plausibilität des Messwertes konnte aus irgend einem Grund nicht mehr garantiert werden.	Diese Meldung ist eine Warnung und zeigt an, dass eventuell entsprechende Maßnahmen ergriffen werden müssen, damit keine Anlagenteile beschädigt werden.	